## MA 1<sup>st</sup> Sem Paper II (Research Methods & Statistics)

Prof. Sudha Mehta

Topic for the day:

Analysis of Variance Using -Analysis of Variance

## • Problem Statement:

To know if there is any significant difference between the three methods of teaching- Lecture/Seminar/Discussion Using -Analysis of Variance

# • What possible data do we need for analysis?

Performance scores of subjects (students) who were taught using different methods (Lecture/Seminar/Discussion) on different days

#### **KNOW YOUR DATA**

Distribution of performance scores of subjects treated by the three different methods of instructions (Lecture/ Seminar/ Discussions)

|                   |                | Method         |                    |
|-------------------|----------------|----------------|--------------------|
| Subject<br>Number | Lecture<br>(1) | Seminar<br>(2) | Discussions<br>(3) |
| 1                 | 8              | 11             | 5                  |
| 2                 | 10             | 13             | 5                  |
| 3                 | 11             | 13             | 8                  |
| 4                 | 11             | 15             | 9                  |
| 5                 | 12             | 16             | 10                 |

#### Subject

### In our example

| <ul> <li>n = number of subjects</li> </ul>              | 5   |
|---------------------------------------------------------|-----|
| <ul> <li>k = number of independent variables</li> </ul> | 3   |
| <ul> <li>N = number of observations = k*n</li> </ul>    | 15  |
| <ul> <li>G = sum of all observations</li> </ul>         | 157 |

#### QUICK RECAP OF BASIC TERMS

Using -Analysis of Variance

|                   |                | Method         |                    |  |
|-------------------|----------------|----------------|--------------------|--|
| Subject<br>Number | Lecture<br>(1) | Seminar<br>(2) | Discussions<br>(3) |  |
| 1                 | 8              | 11             | 5                  |  |
| 2                 | 10             | 13             | 5                  |  |
| 3                 | 11             | 13             | 8                  |  |
| 4                 | 11             | 15             | 9                  |  |
| 5                 | 12             | 16             | 10                 |  |
| Σ                 | 52             | 68             | 37                 |  |

G

7

n = 5; k = 3; N = kn = 5\*3 = 15

## RECAP OF TERMS & FORMULAS

- C = Correction Term = G<sup>2</sup>/kn
   Kn
   Total Sum of Squares = Total SS = (∑X) C
- Between Groups Sum of Squares = Between Groups SS =  $\sum (\sum X)^2 C$

#### n

• Within Groups Sum of Squares = (Total SS) – (Between Groups SS)

|                   |                | Method         |                    |
|-------------------|----------------|----------------|--------------------|
| Subject<br>Number | Lecture<br>(1) | Seminar<br>(2) | Discussions<br>(3) |
| 1                 | 8              | 11             | 5                  |
| 2                 | 10             | 13             | 5                  |
| 3                 | 11             | 13             | 8                  |
| 4                 | 11             | 15             | 9                  |
| 5                 | 12             | 16             | 10                 |



- Mean Square (MS) = SS df
- Significant Difference (F) = MS Between Groups

MS Within Groups

### RECAP OF TERMS & FORMULAS

|                   | Method         |                |                    |
|-------------------|----------------|----------------|--------------------|
| Subject<br>Number | Lecture<br>(1) | Seminar<br>(2) | Discussions<br>(3) |
| 1                 | 8              | 11             | 5                  |
| 2                 | 10             | 13             | 5                  |
| 3                 | 11             | 13             | 8                  |
| 4                 | 11             | 15             | 9                  |
| 5                 | 12             | 16             | 10                 |
| Σ                 | 52             | 68             | 37                 |

## Computations

Step 1: Correction Term (C) =  $G^2 = (157)^2 = 1643.27$ kn 15

Step 2: Total SS =  $(\sum X^2) - C$ =  $(8^2 + 10^2 + 11^2 + 12^2 + 11^2 + 13^2 + 13^2 + 15^2 + 16^2 + 5^2 + 5^2 + 8^2 + 9^2 + 10^2) - C$ = 1785.00 - 1643.27 = 141.73

|                   | Method         |                |                    |
|-------------------|----------------|----------------|--------------------|
| Subject<br>Number | Lecture<br>(1) | Seminar<br>(2) | Discussions<br>(3) |
| 1                 | 8              | 11             | 5                  |
| 2                 | 10             | 13             | 5                  |
| 3                 | 11             | 13             | 8                  |
| 4                 | 11             | 15             | 9                  |
| 5                 | 12             | 16             | 10                 |
| Σ                 | 52             | 68             | 37                 |

## Computations

Step 3: Between Groups SS = 
$$\sum (\sum X)^2 - C = 52^2 + 68^2 + 37^2 - C$$
  
n 5  
=  $(2704 + 4624 + 1369) - C = 8697 - C = 1739.4 - 1643.27 = 96.13$   
5 5

**Step 4: Within Groups SS** = (Total SS) – (Between Groups SS) = 141.73 – 96.13 = **45.6** 

#### **KNOW YOUR TABLE**

Summary of one-way analysis of variance

| SS     | df                            | MS                                                                              | F                                                                                                                       |
|--------|-------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 96.13  | 2                             | 48.07                                                                           | 12.65**                                                                                                                 |
| 45.6   | 12                            | 3.8                                                                             |                                                                                                                         |
| 141.73 | 14                            |                                                                                 |                                                                                                                         |
|        | SS<br>96.13<br>45.6<br>141.73 | SS       df         96.13       2         45.6       12         141.73       14 | SS       df       MS         96.13       2       48.07         45.6       12       3.8         141.73       14       14 |

Table value \*\*F.,, (2,12) = 6.93

#### • How to interpret?

There is significant difference if, Calculated value of F > table value

**Interpretation of our data**: Since 12.65 > 6.93, hence significant diff between 3 methods

## **Tip:** When is this method used?

When we have

## More than 2 values of independent variables

## Questions??

### Thank You!